
Czech technical university in Prague

Electrotechnical faculty

Department of microelectronics

Master’s thesis

ROM generator design

Author: Martin Švarc

Thesis advisor: prof. Ing. Jiří Jakovenko, Ph.D.

Study programme: EK

Prague 2024

ii

iii

iv

v

Affidavit

I declare that this thesis has been composed solely by myself and that it has not been submitted, in

whole or in part, in any previous application for a degree. Except where stated otherwise by reference

or acknowledgment, the work presented is entirely my own.

In Prague

 Author’s signature

vi

vii

Acknowledgement

First and foremost, I would like to express my gratitude to my mentor at Allegro Microsystems

Richard Starý for his invaluable guidance, knowledge, and feedback throughout this whole project.

In a similar light, this project would not be possible without the opportunity and tools provided by

Allegro Microsystems. I also wholeheartedly thank my thesis advisor Jiří Jakovenko for setting up

this opportunity and for his help in finalizing this project. Last but not least, a thank you to my family

and friends whose company, support and good times in between the long hours spent on this project

have kept me focused and motivated.

viii

ix

Abstract

Time to market is a crucial factor that can determine the costs of integrated circuit design

development. Tools automating parts of the designing process can save on development time by

essentially skipping them. In this project, a read-only memory generator, based on an existing

memory design, was developed for this purpose with use of the Cadence SKILL language. This

design is a 1.8 V asynchronous memory with a 12-bit input address. The number of bit lines directly

corresponds to the width of the output data bus. The generator capabilities are memory schematic

and layout generation, memory reprogramming, automatic decoding and post-layout access time

simulations, and generation of a functional model for decoding simulations in Verilog. These

functions can be run separately by using a graphical user interface integrated directly into Cadence

Virtuoso menus. Created memories range from 128 B to 65.536 kB with access times from 4.2 ns to

6.9 ns under nominal conditions. Corner runs show an increase of, at most, 78% from the original

value. Additionally, the generated memory layout area spans from 21397 µm2 to 829776 µm2. The

maximum memory generation time was 1 hour and 31 minutes.

Keywords: ROM, memory, generator, compiler, SKILL

Abstrakt

Čas, než se produkt dostane na trh, je jedním z rozhodujících faktrorů, které ovlivňují vývojové ceny

integrovaných obvodů. Nástroje, které automatizují části průběhu vývoje, zkracují tento čas jejich

přeskočením. ROM generator, založen na existujícím spolehlivém návrhu paměti, byl vyvinut v

tomto projektu k dosažení tohoto cíle s použitím jazyka SKILL. Zmíněný návrh je asynchroní paměť

s 1.8 V napájecím napětím a 12-bitovou vstupní adresou. Počet sloupců těchto pamětí přímo určuje

šířku sběrnice výstupních dat. Schopnosti generátoru jsou generace schemat i layout paměti,

přeprogramování paměti, automatické dekódovací simulace, automatické simulace přístupového

času vycházející z layout generované paměti a vytvoření funkčního modelu pro digitální simulace

ve Verilogu. Zmíněné funkce mohou být spuštěny odděleně pomocí grafického uživatelského

rozhraní, které bylo integrováno přímo do Cadence Virutoso. Velikosti generovaných pamětí se

pohybují od 128 B do 65.536 kB s hodnotami přístupových časů od 4.2 ns do 6.9 ns za normálních

podmínek. Simulace spuštěné přes rohy vycházejí s maximálně 78% nárůstem přístupového času od

původní hodnoty. Zároveň se layout plocha generovaných pamětí pohybuje od 21397 µm2 do

829776 µm2. Maximální generační čas paměti byl 1 hodina a 31 minut.

Klíčová slova: ROM, paměť, generator, kompilátor, SKILL,

x

xi

List of Abbreviations

ADE Analog Design Environment

AFS Analog fastSPICE

ATD Adress Transition Detector

BL Bit Line

CE/CS Chip enable/Chip Select

CIW Command Interpreter Window

CLK Clock

CMOS Complementary Metal-oxide Semiconductor

COLE Column enable

CRC Cyclic Redundancy Check

DPC Dummy Pre-charge

DRC Design Rule Check

HDL Hardware Description Language

IC Integrated Circuit

LATE Latch enable

SAOD Sense amplifier output dummy

LVS Layout vs Schematic

MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor

OCEAN Open Command Environment for Analysis

PC Pre-charge

RAM Random Access Memory

ROM Read-only Memory

UNIX Uniplexed Information Computing System

VNEG Voltage negative

VPOS Voltage positive (Supply voltage)

VSUB Voltage substrate

WL Word Line

xii

xiii

List of Figures

Figure 1: A ROM block diagram ... 3
Figure 2: ROM cell topology [1] ... 4
Figure 3: A static singles-stage row decoder ... 6
Figure 4: A 7-bit dynamic address decoder with three pre-decoders [5] .. 6
Figure 5: Access and read recovery time asynchronous diagram [7] ... 7

Figure 6: A pre-charge transistor.. 8
Figure 7: A Current mirror sense amplifier design with bit line select... 9
Figure 8: A typical D latch circuit [10] ... 9

Figure 9: SKILL application diagram [14] ... 12
Figure 10: Types of OCEAN commands [16] ... 14
Figure 11: A vector file generated by a vector generator .. 15
Figure 12: The generator ROM block diagram [7] .. 16
Figure 13: Two ROM core cells with different values stored ... 17
Figure 14: Memory row selection .. 18

Figure 15: Address transition detector timing diagram [7] ... 18
Figure 16: One branch of the address transition detector ... 19
Figure 17: A single pre-decoder subcircuit with a truth table ... 19

Figure 18: A single row decoder subcircuit... 20
Figure 19: A Sense circuit branch .. 22
Figure 20: The timing unit circuit .. 23
Figure 21: Timing unit internal signal operation ... 24
Figure 22: Latch entering hold for the output data ... 24
Figure 23: The original ROM layout.. 25

Figure 24: ROM generation diagram ... 27
Figure 25: Generator UI.. 28
Figure 26: ROM programming diagram ... 29
Figure 27: Programming list arrangement .. 29
Figure 28: DATAOUT on address change with access time measurement................................... 32
Figure 29: A generated config view ... 33
Figure 30: Access time simulation diagram .. 33

Figure 31: Decoding simulation diagram ... 34
Figure 32: Functional memory model for digital simulations ... 35
Figure 33: Testbench of the memory model ... 36
Figure 34: Access time values of generated memories... 39
Figure 35: Access time values of generated and estimated memories ... 41
Figure 36: romTop_256x1532 layout ... 43
Figure 37: romTop_128x512 layout... 43
Figure 38: romTop_32x256 layout... 44

xiv

List of Tables

Table 1: Logic truth table of an address decoder.. 5
Table 2: A list of common SKILL functions for IC design [14] .. 13
Table 3: Row decoder truth table ... 21
Table 4: Column decoder truth table... 21
Table 5: Size reference [b] of generated and estimated memories ... 38

Table 6: Access time [ns] of generated memories .. 38
Table 7: Average change in access time per 16 columns... 40
Table 8: Average change in access time per 4 rows.. 40

Table 9: Access time [ns] with estimated values .. 41
Table 10: Corner run access time [ns] values .. 42
Table 11: Calculated memory area layout [µm2].. 42

xv

Table of Contents

Chapter 1: Introduction .. 1

Chapter 2: Read only memory overview .. 3

2.1. Address decoding ... 4

2.2. Read cycle operation .. 7

2.3. Timing unit and control schemes ... 10

2.4. Simulation methods.. 10

Chapter 3: Employed software .. 12

3.1. SKILL... 12

3.2. Simulation tools ... 14

Chapter 4: Used read-only memory design .. 16

4.1. Memory core and word structure... 17

4.2. Address decoding scheme ... 18

4.3. Sensing circuit ... 22

4.4. Timing unit.. 22

4.5. Layout design .. 25

Chapter 5: Read-only memory generator design .. 27

5.1. Read-only memory programming and reprogramming.. 28

5.2. Schematic and layout generation ... 30

5.3. Access time simulation ... 31

5.4. Decoding simulation .. 34

5.5. Functional model for digital simulations and file conversion ... 35

Chapter 6: Generator results ... 37

6.1. Simulator constraints.. 37

6.2. Access time ... 38

6.3. Layout area.. 42

6.4. Generation time ... 44

Chapter 7: Conclusion... 45

Bibliography:.. 47

1

Chapter 1: Introduction

Although research today focuses mainly on RAMs (random access memories), ROMs (read-

only memories) remain a critical part of microcontrollers. Data stored in a ROM is programmed in

the manufacturing process and remains stored even on power loss. It usually contains instructions

for device start up, firmware or other permanent data that does not require fast access. Technological

improvements in IC (integrated circuit) design ensure that new and improved electronic memories

are being developed constantly.

Cost effectiveness is an important factor of every IC design. While a ROM already has an

advantage over RAM in this respect, further reductions in costs can be made. Time to market

significantly affects the cost of a design and reducing it is an everyday struggle of companies. Though

an electronic memory is only a small part of an IC design, the time to develop it can become

considerable, especially concerning the memory layout. Efforts are being made to automate the

process of memory design as much as possible, reducing the time to market. These range from simple

scripts that generate or program memory cells to fully fledged memory compilers or generators. They

can not only generate but also have additional features to help with the design and verification

process such as automatic testing and reprogramming of the generated memory.

With the use of a memory generator, designers can automatically generate electronic

memories by specifying the size needed for their application. The generator can differ in types of

memory and in the way it is optimized, e.g. speed, reliability, efficiency, or area consumption. In the

case of ROMs, the generator must also program the generated memory with data. However, memory

generators are not freely available. Additionally, the generator must have its parts separately

developed for each new memory design to achieve high-quality results. Consequently, it is common

practice that companies develop and use in-house memory generators, that are based on memory

designs that were already developed, tried, and tested. The goal of this work is to create one such

in-house generator for the purpose of saving time on ROM design and enabling designers to focus

their efforts on other projects.

A ROM generator for 180nm CMOS (Complementary Metal-oxide Semiconductor)

technology, based on an existing design and intended for this use, is to be developed, and tested with

tools part of Cadence software in this project. The generator must be able to create memories with

rows ranging from 8 to 256 and word length at least up to 64 bits. The number of words per row will

be 16 and the memory supply voltage 1.8 V. The generated memories will be capable of working at

a 50 MHz operating frequency.

Apart from the ability to generate a ROM with both schematic and layout views for different

sizes specified by the user, the generator should also allow the user to quickly test and measure

important parameters of the generated memory. Furthermore, the generator will be controlled by an

easy-to-use user interface that passes information about ongoing memory generations to the user.

Additionally, a functional digital model for digital simulations of the generated memory can be

generated.

2

Certain ROM dimensions and sizes are more likely to be used than others. For example, the

word length is always determined by a microprocessor that is intended to use the memory. The data

bus width is usually divisible by 8 following a byte structure. However, when error-detecting codes

are used, the width increases by a number of bits depending on the code used. A single parity bit, that

detects an odd number of errors, makes the data bus width odd. Similarly, multiple bits can be claimed

by more advanced checks like CRC (cyclic redundancy check). Although these are used sparingly

with ROM designs, there is no reason to restrict the generator needlessly. As such, the generator will

be implemented to a full range of capabilities of the existing design with word lengths including 64

bits and more.

The chapters covering the design of the memory generator are ordered as follows: Chapter

2 discusses the basics of read-only memory design and its function; Chapter 3 describes software

used in development of the generator, including the SKILL language; Chapter 4 continues with a

detailed overview of the ROM design chosen for the generator; Chapter 5 covers the developed ROM

generator capabilities and functions; Chapter 6 analyzes the data resulting from generating and

simulating memories created by the generator; Chapter 7 is a conclusion summarizing the results of

this project.

3

Chapter 2: Read only memory overview

A ROM has several characteristic properties. Reading from the memory does not change the

values stored. ROMs are also non-volatile which means that they do not lose stored information when

their power supply is removed. That is why they are usually used for storing essential data, used by

microprocessors, that does not need to be modified throughout their life cycle.

Although different types of field-programmable ROMs exist and are widely used, this thesis

focuses on those that are programmed in their manufacturing process, also called mask ROMs. Mask

ROMs are the least space-consuming and cheapest memories as they are factory programmed and

their cells only use a single transistor to store a bit of data. A modern ROM deploys several different

subcircuits and techniques to ensure quick and reliable operation. Figure 1 depicts a simplified block

diagram that shows how different parts of the memory can relate to each other.

Figure 1: A ROM block diagram

Upon reading data from a ROM, the outcome of a single cell depends on the transistor

threshold voltage and connection to a bit line (BL). The output can equal either “1” or “0” when the

row or word line (WL) voltage is greater or equals the threshold voltage of the controlling transistor

while the transistor is disconnected from the bit line. Any other state results in the opposite value.

Consequently, the memory is always programmed in its manufacturing process.

4

Figure 2: ROM cell topology [1]

 A common and simple way to program a read-only memory is connecting or not connecting

a transistor to the appropriate column or bit line with a metal contact. This method does not

necessarily increase chip size as the interconnect can be placed on different layers or can take the

form of a single via. Other methods include channel implantation, which creates enhancement-mode

or depletion-mode transistors and changing the threshold voltage with the width of the gate oxide [2].

A single cell is multiplied vertically to match the number of rows and horizontally to match

the desired word length and number of words per row of the memory, thus creating a memory array,

also called a memory core. It is in this step where manufacturing costs can increase if the layout of

the cell is not space efficient. Other factors are also presented with increasing size of the memory

that need to be accounted for. For example, assuming the supply rails to each cell have resistance,

their voltage can vary depending on the layout of the memory. The high number of transistors can

also lead to considerable power dissipation due to the high capacitance of the memory word lines

and bit lines. These and other unavoidable factors that can lead to wrong output readings, if not

accounted for by the circuit design, will be further discussed in this chapter.

2.1. Address decoding

As the memory core grows, so does the number of word lines, bit lines, and consequently

the number of address signals to drive them. The requirements of today’s state-of-the-art technology

are increasingly more demanding for memory capacities with the number of word lines easily

reaching hundreds. If the number of address signals were to remain unmanaged, not only would it be

impossible to communicate with the memory, due to the mass of signals required, but it would also

lead to substantial differences in path lengths and subsequently an increase in the time the signal

takes to reach the word lines and bit lines. That is why the approach of implementing a memory by

arranging the words linearly, where each single word would have its own independent address signal

for possible reading, leaves much to be desired.

An address decoder decreases the number of addressing signals needed to access ROM data

by a factor of log2N, where N is the number of independent address points [3]. Additionally, it ensures

that only a single row is accessed in a read cycle. This is necessary for the correct function of the

memory, as reading from multiple addresses simultaneously would lead to incorrect readings. The

decoder has a unique output assigned to every binary combination of input address signals, as shown

in Table 1.

5

Table 1: Logic truth table of an address decoder

Address bit 0 Address bit 1 Address bit 2 Address point
0 0 0 R0

0 0 1 R1
0 1 0 R2

0 1 1 R3
1 0 0 R4

1 0 1 R5
1 1 0 R6

1 1 1 R7

Address decoders can be split into two types. While a row decoder is responsible for picking

the correct row, a column decoder is used when there is more than one word in a single row. In this

way, the address can be split into two parts where several bits are assigned to the row decoder and

the rest to the column decoder. For example, with a 12-bit address and 4 bits used by a column

decoder, the memory will have 16 words per row, and the remaining 8 bits will make up 256 rows.

Column decoders help with power consumption because they enable switching of a smaller amount

of bit lines simultaneously [3].

Though this approach can be used successfully with smaller memories, the decoding process

can be further divided by a pre-decoding stage. Apart from being more space-efficient, this method

is also more power-efficient and faster in large memories, reducing the loading on input address

buffers [4]. Generally, a pre-decoder takes a set number of address bits and partially decodes them

into a larger number of additional signals. The pre-decoding stage consists of OR/NOR and

AND/NAND gates that convert the address into multiple combinations of sums and products of all

the address bits and their negatives. Possible implementations of decoders are depicted in Figures 3

and 4.

6

Figure 3: A static singles-stage row decoder

Figure 4: A 7-bit dynamic address decoder with three pre-decoders [5]

7

Address decoders can be static or dynamic. Static decoders are not driven by other signals

and decode the input address constantly. While a static decoder is generally used because of its lower

power consumption during the decoded row transitions [4] and lower area consumption, it can

present a significant capacitive load to the address bus [6]. A dynamic decoder is driven by a pulse

signal that dynamically enables it when the input address changes. It prioritizes speed and it can

implement techniques such as self-resetting gates to reduce power consumption [6].

2.2. Read cycle operation

A read cycle is the process that a memory performs and repeats when a microprocessor

requests access to the stored data. In the case of asynchronous memories, the cycle begins when the

memory receives a new address and lasts until another address is received. Synchronous memories

wait for a clock signal instead of reading immediately upon address change. Memory timing

operation is discussed later in this chapter.

The time that it takes to change the output data from the moment a new address is received

is called access time. Access time is a noteworthy metric and an essential design requirement for any

electronic memory. Its complementary value, the read recovery time is the time it takes the memory

to return to base output value. The read cycle will be explained further to convey how different parts

of the memory are used in its duration.

Figure 5: Access and read recovery time asynchronous diagram [7]

The cycle starts with a pre-charge process that usually takes place before receiving an

address. It makes use of the fact that the extensive wiring of the bit lines behaves as multiple

capacitors and holds charge for a short period of time after being charged. Therefore, all bit lines are

pre-charged by the supply voltage resulting in them having the same value. This is done with a simple

circuit for every bit line that consists of a single transistor, driven by a timing PC (pre-charge) enable

signal, as shown in Figure 6. A PMOS transistor is used because of its good supply voltage passing

capacity and consequently the ability to pass supply voltage without it dropping. [3] The dimensions

of this transistor control how quickly the bit lines can be pulled up.

8

Figure 6: A pre-charge transistor

However, pre-charging can prove very power-demanding and might be unsuitable for certain

low-power applications. To avoid that, pre-charging can start after receiving an address at the cost of

access time and the target voltage of the bit lines can be lower than the supply voltage. Furthermore,

certain selective pre-charging methods use only a part of the address to reduce the number of

redundantly charged bit lines [8] in an effort to combat the power inefficiency of pre-charging.

Nevertheless, this adds a certain level of complexity to the design, increasing its area, and might give

way to a higher number of mismatches on the output of the ROM.

Once the address is decoded and bit lines have been charged, the relevant bit lines are

disconnected from the supply voltage and connected to a sense circuit. The way a sense circuit is

implemented determines word length among other things. A sense amplifier, which is commonly

used to amplify and detect small signals, can be a part of said circuit. It either serves as a buffer to

improve the output slew rate and set the output signal to the circuit’s logic value for pre-charged bit

lines or also amplifies the signal resulting from the partially charged bit line which leads to a

minimized voltage span.

To achieve the minimized bit line voltage span, a current-mirror-type architecture is used

with the bit lines being left unconnected in the case of logical ones on the output. In the case depicted

in Figure 7, when an SAE (Sense amplifier enable) pulse closes M1, supply voltage disconnects from

the gates of transistors M2 and M3. If the value on the bit line chosen by M4 is “0”, M2 and M3 start

conducting and the input of the output inverter starts rising together with the M2 gate voltage. After

the inverter input reaches a value higher than the threshold voltage of the inverter, M2 and M3 lose

conductivity and the inverter input returns to “0”. This creates a short pulse of VNEG on the SENSE

OUT output reflecting the value stored in the read cell. Owing to the short length of the pulse and

lower voltage value on the bit lines, this sense amplifier can be highly sensitive to the presence of

noise and other mismatches which can cause a wrong output signal [9].

9

Figure 7: A Current mirror sense amplifier design with bit line select

Finally, the resulting data must remain on the output of the memory for a period of time so

a microprocessor can read it. Therefore, data latches (flip-flops) are used to store the entire length of

the word. The output of the latch replicates the input of the D terminal when the clock signal is high.

On the falling edge of the enable signal, the latch stores the bit value of the D terminal and holds it

until the rising edge starts the next cycle.

Figure 8: A typical D latch circuit [10]

10

2.3. Timing unit and control schemes

An electronic memory can be differentiated according to its timing operation. An

asynchronous memory changes its output directly after the address input is changed. Its design

eliminates the need to generate a clock signal and all the wiring associated with it. Furthermore, it

helps with the time margins and clock skews over large areas in the memory designs [4]. To avoid

glitches caused by its asynchronous nature, an asynchronous ROM also needs an address transition

detection circuit. The address transition detector typically consists of blocks with delay elements,

consisting of inverters with longer channel lengths or lower widths in series, and logic gates that

detect rising or falling edges replicated for each bit of the address. Every time one or more address

bits change, the address transition detector generates a pulse by pulling down the supply voltage.

This pulse is further used by a timing unit. Similarly, a synchronous memory changes its output with

a rising or falling edge of a clock signal which is supplied to the timing unit where it is adequately

delayed for other memory blocks.

However, the choice between synchronous and asynchronous architecture has its set of

criteria that depends on many design parameters of microprocessors and the communication

protocols used by them. Nevertheless, the fact that asynchronous designs provide dynamically

chosen frequencies leads to enhanced scalability over synchronous designs. Additionally,

asynchronous designs are overall less susceptible to latency [11].

The timing unit ensures precise timing of the address decoder, pre-charge circuit, and output

latch. It also deals with timing hazards, such as a change in the address input before the read cycle is

completed, which can lead to two cells being read from simultaneously [4]. Although the timing unit

also consists of only delay elements, logic gates, and buffers, it can vary substantially depending on

the specific timing control scheme implemented.

The simplest scheme is to directly connect the timing signal to all the previously mentioned

blocks, but it is clearly not optimal for larger memory dimensions because of its dependence on

timing margins for reliability. The first solution is to place delay elements in series and pull the timing

signals from different points of the delay chain accordingly. Thus, the delay elements are chosen to

replicate the approximate delay caused by the memory size. For an even tighter approximation of the

pre-charged bit line delay, which can change due to threshold and supply voltage fluctuations, a

dummy column replica is widely implemented. An additional bit line is placed at the edge of the

memory core with all its cells storing a value that corresponds to cell discharging, ensuring maximum

delay independently on the word line chosen by the adress decoder [12]. Consequently, the bit line

delay is accurately replicated with only a small amount of overhead. When a word line is activated,

the dummy column begins to discharge in parallel to it and is evaluated in a sense circuit without a

latch. The sense circuit must reproduce the remaining delay by using lower-width transistors and

delay elements as was discussed earlier.

2.4. Simulation methods

In all integrated circuit designs, testing and verification of the design is performed. In this

process, essential parameters are checked meticulously to guarantee the circuit’s correct function as

much as possible. In the case of a ROM, two main criteria must be verified. The memory output data

must match its stored data, and the speed at which the data can be read repeatedly must meet the

design specifications of the processor it will be used with.

11

To validate that the memory data output is correct, two tests should be carried out. Firstly, a

decoding simulation that checks if only a single word line and the correct bit lines are active, for each

according address, assuming the memory uses address decoders. The number of signals and

addresses that need to be checked grows rapidly with the ROM size. Testing all of them manually

would prove needlessly time-consuming. Secondly, the important internal timing signals, responsible

for reading the output data from a latch within the right time frame, must be checked. Due to the

ever-increasing speed of memories, mismatches even fractions of a ns long can prove fatal to the

function of the memory.

The next parameter to be simulated in an electronic memory is access time. One of the ways

to go about measuring it is by checking for a change in output data represented by a rising or falling

edge and subtracting its time from the time when the input address changes. However, to check every

signal of the address for the time its value changes is unnecessary and can be easily substituted for a

clock signal whose rising edge indicates address change. Asynchronous memories can also be tested

this way with their address input changes following a synchronous clock signal.

These parameters can be tested not only by simulating the memory schematic circuit but also

by simulating the design’s layout by creating a layout extraction. This process invokes a tool that

creates an accurate representation of the electrical characteristics of the memory physical layout by

identifying the parasitic capacitances and resistances formed by the layout features. The post-layout

simulation is usually an iterative process as the layout may need to be changed if the results do not

meet the design specifications [13].

However, performing a post-layout simulation for all the design parameters is unnecessary

because the parasitic elements may have zero influence over them. This proves to be true for the

decoding simulation, as assuming the physical layout, verified by DRC (design rules check) and LVS

(layout vs schematic) checks, is correctly routed, the result of decoding will always be identical to

the result from the schematic simulation.

12

Chapter 3: Employed software

Certain tools and software frameworks are required for the automatic generation and

simulation of a ROM. Given that Cadence tools such as the schematic and layout editor or ADE

(Analog Design Environment) are tightly interwoven with and run on a powerful scripting language,

SKILL, it was the first choice for the development of the generator. Other tools to help with the

automation of simulations were also used and are discussed further in this chapter.

3.1. SKILL

Cadence’s scripting language, SKILL, is based on LISP, which is a high-level programming

scripting language, but also supports a C-like syntax. SKILL is perhaps most used for quality-of-life

improvements by everyday users such as defining functions, binding them to a specific key, or putting

them in pulldown menus for later use. Still, there is virtually no limitation on the applications for

which it can be used [14].

Figure 9: SKILL application diagram [14]

In Cadence, a cellview is a database object that represents a specific design or its part that

can be freely opened, edited, and saved. There are multiple types of cellviews such as the typical

schematic, layout, or symbol, but also configuration, among many others, that enables substitution

of schematics for different types of cellviews for later simulations. An instance, also a database

object, forms a part of a cellview that can represent other cellviews. Pins and terminals form the

inputs and outputs of a cellview. Terminals consist of attached pins and nets while a pin represents

the direction and location of the terminal. A net represents a single signal or bus of signals throughout

the design.

In SKILL, programs are stored as lists. A list is an ordered collection of SKILL data objects.

The data objects can have any data type, including variables and other lists. The lists can be traversed

just as in LISP by accessing the contents of the address or decrement register, representing the first

and the rest of the list elements. Lists are an essential part of the language and are used throughout

the whole generator. [14]

13

For the purposes of memory generation, the memory blocks must have their schematic and

layout views created. This process can be simplified and broken down into a few steps that can be

followed for the whole design. Firstly, a cellview is opened or created. Secondly, instances are placed

on specified coordinates and have their properties set. Next, the instances are connected by wires in

a schematic or paths in a layout view where additional rectangles may be placed. Then, terminals are

placed, nets created, and both are interconnected in the database. Finally, the cellview is saved and

closed. Naturally, certain variants of built-in functions need to be used frequently to achieve complete

ROM generation. Here is an overview of some of them.

Table 2: A list of common SKILL functions for IC design [14]

Function Description

dbOpenCellViewByType()
Non-graphically opens a cellview or creates it if it does not

exist yet.

dbCreateInstByMasterName()
Creates an instance according to the library, cellview, and

name specified.
schCreateWire() Creates a wire in a schematic cellview.

schCreateWireLabel()
/dbCreateLabel()

Functions for label creation of different kinds.

schCreatePin()/dbCreatePin()
/dbCreateTerm

Functions for terminal/pin creation. Both pins and terminals
need to be created in a layout cellview. One terminal can have

multiple pins.

dbMakeNet()
Makes or returns a net stored in the database if it already

exists. Necessary for the use of other functions.

dbCreateRect()/leCreatePath() Functions for placing various layer shapes in a layout view.

dbCreateVia()
techFindViaDefByName()

These functions are used to create a via in a layout view. The
via parameters are defined in a separate tech file but can be
customized with input parameters. Vias are not instances and

can be created only in this way.

schSchemToPinList()
schPinListToSymbol()

These two functions together take a complete schematic and
generate a symbol out of it. The outcome is equivalent to
creating the symbol from a schematic cellview directly.

lxGenFromSource()

Automatically generates a layout cellview from a schematic
cellview with terminals and instances placed. The schematic

instances are placed only if they have a layout cellview
themselves.

SKILL functions can have different prefixes that indicate in what environment the function can be

used. The ‘db’ prefix stands for database, and functions that have it are used to access database objects

through their identifiers. When a database object is loaded into virtual memory, i.e. when its cellview

is open, the object and its properties can be accessed and manipulated [15]. Functions with prefixes

such as ‘sch’ ‘le’ ‘lx’ and so on, manipulate opened cellviews in their respective environments and

may be limited by a license for that environment.

14

3.2. Simulation tools

ADE can be controlled with the use of a powerful scripting tool, OCEAN (Open Command

Environment for Analysis), that stands as an extension of SKILL. Among other things, OCEAN

enables running simulations, without a graphical environment, repeatedly. OCEAN sessions can be

run directly from the CIW (Command Interpreter Window) or from a UNIX (Uniplexed Information

Computing System) shell. All OCEAN commands can be divided into three categories which are

simulation set-up, run simulator, and data access [16]. OCEAN can be very convenient for users

familiar with ADE because its simulation scripts can be generated directly from an ADE cellview.

However, the documentation for simulators, that must be chosen and configured, is more difficult to

come by. Additionally, the simulators don’t have complete support for these features. So, configuring

the simulator’s options directly through code is not ideal as the different functions might not behave

as expected.

Figure 10: Types of OCEAN commands [16]

For further customization, OCEANXL, an OCEAN extension, enables the user to employ

functions to directly set outputs, corners, specifications, and more. These are important to quickly

determine if the simulated ROM behavior is satisfactory. An output is an expression made of

functions that determine the values of different signals at a given time. The output expression results

in a value that can be checked with specifications that specify the acceptable results with a maximum,

minimum, or other combination of threshold values. A corner is a technique that refers to a variation

of fabrication parameters to run the simulation over. They are commonly used to run the simulation

over a combination of temperature and supply voltage variations which would lead to decreased

performance [17].

15

Another tool used for the purpose of simulating is a vector generator. It takes input in the

form of a text file and reliably generates signal vectors from specified parameters for commonly used

simulators. These vectors can replace and act as a source in a testbench schematic when included in

the simulation files. Furthermore, the vectors can also be set as expected outputs that can be checked

against the results of a simulation. That is how the multitude of address inputs can be easily

configured and their outputs checked with the generated vectors in the decoding simulation. An

example of the generated vectors is shown in Figure 11. In this case, a change in address input is

expected to bring a change in the word line signals. On the left side is the simulation time of the

change in the inputs and outputs listed at the top of the figure.

Figure 11: A vector file generated by a vector generator

This was a brief overview of the software used to develop the ROM generator. How the

SKILL and OCEAN functions were used will be further discussed in Chapter 5. In the next chapter,

the ROM design selected for the generator will be described.

16

Chapter 4: Used read-only memory design

The ROM design to be adopted by the generator is an asynchronous modular memory design.

It has low power consumption at a 1.8V power supply and an operating frequency of 50MHz. A 12 ns

read access time is guaranteed with a single 64-bit word output data bus and a 12-bit input address.

It also has a chip enable (chip select) input which can be used to activate or deactivate the memory.

Address decoding is split into two stages. The memory uses a dummy column control scheme to

drive all the timing signals. The general structure of the read-only memory is depicted in Figure 12

and will be discussed in detail throughout this chapter.

Figure 12: The generator ROM block diagram [7]

17

4.1. Memory core and word structure

One row of the memory core consists of 16 words and is organized into blocks of 16 cells.

This pattern is repeated until the number of blocks is equal to the word length of the memory. These

cells are arranged such that the block of 16 is formed by one bit from each word of the same position,

and only one of them is selected at a time by the column decoder. This cell arrangement is called

interleaving. The blocks are arranged in an ascending order where the first block represents the first

data output bit, the second represents the second data output bit, and so on.

The data is stored in the form of metal interconnects allowing simple modification and

reprogramming of an existing design. The drain of a given transistor simply needs to be connected

to the according column for the value stored resulting in “0” and unconnected for it being evaluated

as “1”. When the drain is connected to the column and the row driving the transistor gate is active,

the pre-charged column is connected to ground and the column’s voltage starts discharging into it,

creating a drop in value. This affects all the transistors that are connected to their column. Figure 14

depicts a row selection with a connected (M0 with C<0>) and unconnected (M1 with C<1>)

transistor, also visualized in Figure 13. The transistors corresponding to the input address are later

selected from the row in the sensing circuit with the use of a column multiplexer.

Figure 13: Two ROM core cells with different values stored

18

Figure 14: Memory row selection

4.2. Address decoding scheme

Given that the address bus is 12-bit wide, and each row contains 16 words, the column

decoder needs N address bits to access all of them. Since 2n = 16, the column decoder will use 4

address bits. That leaves the last 8 bits for the row decoder with the maximum number of rows being

28, resulting in 256 rows. These address bits are first pre-decoded on address transition into 24 signals

that lead directly into the already mentioned decoders, where they are decoded into the appropriate

number of signals while ensuring only one of them is active at a time. When the address or CE signals

change, they are prone to stabilize only temporarily, as shown in Figure 15, which could lead to

unexpected timing signal behavior and later cause wrong output data if not accounted for.

Figure 15: Address transition detector timing diagram [7]

R<0>

C<0>

C<1>

19

The address transition detector signal is triggered on any transition on the address inputs

through a set of XOR gates, each with a delay element on one of the inputs. The output of the XOR

gates is connected to a transistor gate. Any change on the address lines causes the transistor to open,

pulling the VPOS supply voltage from the address transition detector output, and generating a pulse

the duration of which is determined by the delay element. The time the individual address bits change

varies slightly, and so the length of the resulting pulse is extended until the address is stable. One

branch of this circuit, that detects address transition on a single address bit, is depicted in Figure 16.

The whole circuit has 12 branches that are all connected to the ATDRaw bus.

Figure 16: One branch of the address transition detector

The pre-decoders take two address inputs and decode them into four output signals, only one

of which can be “0”, which is later evaluated as active. When the Chip select signal (CSA) is “0” or,

put differently, reading of the memory is not enabled, not one of the signals is active and no rows

and columns are selected.

Figure 17: A single pre-decoder subcircuit with a truth table

20

How the pre-decoder output signals are used is best seen in the row and column decoder

circuits, where each of these signals leads into multiple p-channel MOSFETs (Metal-Oxide-

Semiconductor Field-Effect Transistors). For a specific word line and bit lines to be active, a given

combination of the pre-decoder output signals must be filled with only “0’s”. If we take all the outputs

of the pre-decoder and label them with letters, we get signals grouped in fours such as A<4:1>,

B<4:1>, and so on. As mentioned above, rows have 8 address signals assigned and columns have 4,

so that leaves A to D for the row decoder and E with F for the column decoder. If we take these

signals and arrange them in a truth table fashion, such that their value corresponds to the letters, we

can see which combination of “0’s” activates which word line and bit lines. A portion of these truth

tables is shown in Tables 3 and 4.

The row decoder schematic is shown in Figure 18. The A, B, and C signals function as

described, but D also acts as an enable signal, due to it being controlled by a pulse generated by the

timing unit, for up to a maximum of 64 rows simultaneously. The output is split into two signals that

lead to both of the memory core halves. The MP10 transistor improves the rising edge of the output

signals. The column decoder circuit is identical to the row decoder, apart from input signals belonging

to the pre-decoder. D is replaced by F and A by E, while B together with C and the two left-over

p-channel transistors are not present. Simultaneously it only has one COLE (Column Enable) output.

Figure 18: A single row decoder subcircuit

21

Table 3: Row decoder truth table

D<4:1> C<4:1> B<4:1> A<4:1> Word line (row)
D<1> C<1> B<1> A<1> 0

D<1> C<1> B<1> A<2> 1
D<1> C<1> B<1> A<3> 2

D<1> C<1> B<1> A<4> 3
D<1> C<1> B<2> A<1> 4

D<1> C<1> B<2> A<2> 5
:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

D<1> C<1> B<4> A<4> 15
D<1> C<2> B<1> A<1> 16

D<1> C<2> B<1> A<2> 17
:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

D<1> C<4> B<4> A<4> 63
D<2> C<1> B<1> A<1> 64

D<2> C<1> B<1> A<2> 65
:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

D<4> C<4> B<4> A<3> 254

D<4> C<4> B<4> A<4> 255

Table 4: Column decoder truth table

F<4:1> E<4:1> Bit line (column)

F<1> E<1> 0
F<1> E<2> 1

F<1> E<3> 2
F<1> E<4> 3

F<2> E<1> 4
F<2> E<2> 5

:
:
:

:
:
:

:
:
:

F<4> E<3> 14

F<4> E<4> 15

22

4.3. Sensing circuit

COLE signals are further used in the sensing circuit where they act as the address inputs of

a multiplexer. MN4 transistors act as the column multiplexer, choosing between the 16 input columns

from the memory core according to the input address. All the columns are pre-charged by the MP3

transistors before data reading. When a row is selected, the cell transistors containing a “0” connect

the column signals to ground and begin discharging them. The column signals chosen by the column

multiplexer are then driven through a sense amplifier in the form of an inverter. With the improved

slew rate, the voltage can drop well below the threshold voltage of the latch on the sense amplifier

output in time with the LATE (Latch Enable) signal from the timing unit. Finally, the output value is

buffered again. Given that the output is a single bit, the subcircuit shown in Figure 19 is repeated the

number of times equal to the word length of the memory, forming a complete sense circuit that is

controlled by two different signals from the timing unit. The SLEEP signal is unused in this

configuration.

Figure 19: A Sense circuit branch

4.4. Timing unit

The timing unit uses the dummy column timing scheme that was described in Chapter 2. The

output from the dummy column SAOD (Sense Amplifier Output Dummy) together with ATDNOT

(Address Transition Detector Negative Output) and CS (Chip Select) signal form the inputs of an RS

circuit. All of the output signals are buffered and delayed setting the right width and slew rate of their

pulse.

23

Figure 20: The timing unit circuit

When the chip select signal is active and the ADTNOT pulse reaches “0”, the ACCESS_EN

(Access enable) output is set to the supply voltage until after the SAOD (Sense amplifier output

dummy) input reaches the supply voltage. The ACCESS_EN pulse serves as the base signal that the

other timing signals are derived from. ACCESS_EN also drives the earlier mentioned D<4:1>

signals. The negative DPC (dummy pre-charge) pulse drives the dummy column, from which comes

the delayed SAOD pulse. PC is later buffered and controls the actual sense circuit. LATE ensures

that the moment when the latch starts holding is within the correct time frame of data being available

on the output of the sense amplifier, as shown in Figure 22. Though the rising edge of the LATE

signal is relatively early, no bugs will be caused by it apart from the output data always returning to

“1” approximately 2 ns before the actual output value is latched. Figure 21 shows the relationship

between timing signals relative to an address change that is represented by the rising edge of a CLK

(Clock) signal used for simulation purposes.

24

Figure 21: Timing unit internal signal operation

Figure 22: Latch entering hold for the output data

CLK

ATDNOT

SAOD

ACCESS_EN

LATE

SENSE<0>/DATA

25

4.5. Layout design

This ROM layout is a 4-metal design using 180nm semiconductor process technology. It is

modular in nature, as scaling the design systematically will not require the creation of new cell

layouts if the certain specifications set by the nature of the read-only memory are met. These

specifications are mentioned in Chapter 5 while this chapter focuses on the memory layout itself.

Matching is a very important part of every layout design for ensuring that properties of

multiple transistors are almost identical. To achieve it, dummy (unconnected) cells are placed

between the blocks of 16 cells. The dummy cells act as dividers in such a way that the activated cells

in the middle and on the sides of the memory have similar layouts and are not influenced by their

differences. Furthermore, the dummy cells make space for metal paths carrying negative voltage to

the column multiplexers and sense amplifiers located below the memory core.

To shorten the path length between the row decoder and memory cells and to reduce the time

delays associated with them, the memory core is divided into two halves, allowing the row decoder

to be placed in the center. Below are the pre-decoders, the column decoder, the timing unit, and the

address transition detector. At the sides of the address transition detector are buffers, used by the PC

timing signal that is driving the sense circuit. The dummy column is located at the right edge of the

memory core with its sense amplifier, using the space at the bottom right under the sense circuit.

Address inputs, chip-enable, and the data outputs are all located at the bottom of the memory. The

inputs are in the center and each bit of the output data is located right under its corresponding latch

output.

As the memory becomes larger, it becomes more susceptible to differences in the supply

voltage caused by resistance of the increasingly large supply paths. To distribute the power evenly

and to reduce the resistance of the supply paths, power rings are used together with vertical stripes

to carry both positive and negative voltage through the whole design. Power rings surround the whole

layout with a metal layer and the stripes carry the voltage into the design itself where possible, for

example through the dummy cells.

Figure 23: The original ROM layout

26

The dimensions of the design are dependent on the number of rows and columns. Assuming

the same address and decoding structure for different sizes of the memory, the differences in the

layout, caused by their changed number, are mostly limited to the row decoder, sense circuit, and

memory core. Given that the different parts of the design are separated and connected to each other

in a way that supports scaling, it is ideal for the extending and shrinking of the design. The automation

of scaling the design is described in the next chapter together with the other functions of the ROM

generator.

27

Chapter 5: Read-only memory generator design

The ROM generator can generate scaled schematic and layout views of a ROM for specified

dimensions, simulate the memory, verify its correct function with access time and decoding

simulations, and enable programming of the generated design with a text file. A functional model for

use in digital simulations can also be generated. Additionally, instructions on how to use the generator

can be accessed with the “Help” button. Generation and the other functions can be launched

independently of each other, assuming the different conditions for each of them are met. The

constraints of the dimensions of the generated ROM are determined by the design of the ROM which

is described in Chapter 4. These constraints are caused both by the general design of the ROM and

the way the layouts of different cells connect to each other.

Figure 24: ROM generation diagram

The number of rows spans from as low as 8 to 256. Though it is inefficient to create a

low-capacity memory design, the possibility of it is implemented. The row minimum is set because

of the asymmetry of the row decoder layout whose parts cycle through a bottom middle and top

branch. That is also the reason why the number of rows must be divisible by 4, for the ROM to

generate successfully. The upper limit is caused by the bit count of the address as discussed earlier

in Chapters 2 and 4. The lowest number of columns is also limited by the ROM layout. Without

completely restructuring the bottom of the memory layout for the purpose of small dimensions, the

lowest possible number of columns is 128 which results in words 8 bits wide. Besides that, the

number of columns must be divisible by 16 for the memory to have the same word length on each

address and function correctly. Other generator inputs include the paths to a file used to program the

memory and to the ROM generator top script. Additionally, the option of specifying a suffix for key

cellview names is provided.

28

Figure 25: Generator UI

The generator also has a log that relays information about the different processes under the

input string fields. Although the information is technically also located in the CIW, it is quickly lost

among the other messages and warnings printed there. The log tracks the progress of the generator

with a small number of commands instead. A message is printed out into the log when a new block

is being generated, simulations started etc.

In this chapter, how the generator works will be thoroughly described. The chapter is divided

into parts, the order of which does not necessarily follow the order of operation of the generator, but

better conveys the different functions of the generator.

5.1. Read-only memory programming and reprogramming

The first function called, following the launching of the ROM generator, is the makeAddrList

function that creates a list from a file that is filled with binary values, and later used to connect the

drain of transistors to the bit lines. The file used for ROM programing is expected to be a text file

filled with ones and zeros that signify how all the cells are to be programmed to the generator. In

other words, a “1” in the text file represents a logical “1” on the output and the same applies for any

“0’s”. The position of the characters directly corresponds to the position of the transistors in the

generated memory core. Nevertheless, the dimensions of the text file don’t have to be the same as

the memory dimensions, and any missing characters are treated as a “0”. Still, if any characters pass

the dimensions specified to the generator by the user, the programming process results in an error

that alerts the user rather than ignoring the extra value with a warning.

29

Figure 26: ROM programming diagram

The generator opens the existing file and starts creating two lists, one for each half of the

memory core, that are nested in another list. The values of the lists are binary (t and nil) and

correspond to the ones and zeros in the file. If no file path was specified, the lists are generated with

alternating values resulting in a checkerboard-like memory core. The schematic and layout of the

core are then generated according to this list, following its pattern.

Figure 27: Programming list arrangement

The combination of these two methods allows for two different approaches to memory

generation. On the one hand, it is possible to program the memory quickly alongside generating it.

On the other hand, generating a memory with the default checkerboard pattern and reprogramming

it later brings more accurate results from the access time simulation for reasons that will be discussed

later in this chapter.

When reprogramming the memory, the generator first finds and deletes the wires connected

to the drains of the memory core transistors and replaces them with a new pattern taken from the file

used for programming. This is done by filtering wires in the cellview by their labels. Afterwards, the

layout cellview with metal interconnects is recreated according to the pattern and the reprogramming

is completed.

30

5.2. Schematic and layout generation

With the programming list assembled, the generator completes the task of creating the whole

ROM schematic and layout design described in Chapter 4. Creating all instances used in the design

would be needlessly complex while adding no benefits to the generator’s function. Therefore, the

generator uses a cadence library that stores predefined cells that are used in multiple parts of the

design. These cells include invertors, delay elements, memory cells, cell dividers, decoders, sense

subcircuits, and so on.

The functions called after makeAddrList are createRomCore, createRomDummyCol,

createDyRowDecx, createSenseLayout, createTimingBuffer, createRomTestbenches, and create-

RomTop; each generating their respective part of the memory. However, apart from createRomTop,

these functions do not cover all parts of the ROM because the other blocks do not change with the

memory dimensions and thus do not need to be generated. Instead, they are placed with the

createInstByMasterName function. As such, these pre-made cells must be saved in the generator

library for the ROM to generate correctly. This approach helps improve the generation time while

also reducing the complexity of the generator. These blocks are the pre-decoders, the column decoder,

the address transition detector, the timing unit, and the sense circuit for the dummy column.

While generating a schematic with SKILL, the coordinates of instances and wires connected

to them have to match exactly. Rather than checking and inputting these coordinates by hand, the

generator makes heavy use of a function that calculates the exact position of the center of an instance

terminal and, connects a short wire with a label to it in a direction depending on which side of the

instance is the instance terminal located. The side of the instance is determined by comparing

coordinates of the instance terminal bounding box and the bounding box of the instance. In this

manner, every instance and terminal can be connected through wire labels only. However, this

approach proves too demanding to be used for schematics with a huge number of instances and wires

like the memory core. Subsequently, the createRomCore function uses a more optimized method to

connect the array of transistors to word lines and bit lines by specifying the wire and instance

coordinates.

In layout generation, the coordinates of paths, rectangles and vias are strictly restricted by

design rules and a cost-efficient custom design. Consequently, every part of the layout is placed on

specific coordinates following the pattern of the original ROM design. On top of building the layout

from the ground up in the according scale, different-sized memories required small changes in the

design. For example, smaller memories have a slightly larger timing buffer. The additional inverters

were fitted into the lower left corner of the layout in order to further reduce the lower limit of columns

that the generator can make. Furthermore, the placement of tub diodes that connect the N-well and

P-well layers was changed for different dimensions of the design.

31

Typically, upon completing a layout design, DRC and LVS checks are run to verify the

integrity of the layout. Though they are an essential part of layout design, tools, menus, and functions

that are used to invoke them are often proprietary and differ from the standard Cadence toolkit,

making their integration into the generator reliant on access to them. The generator, however, does

not need to run these checks automatically as they were performed beforehand in its development.

Still, the checks can be easily run manually, after the generation is completed, when needed. The

generator supports this by having a dedicated button in the user interface that can open the top layout

cellview. This button is mostly meant to be used as a convenient way to manually run LVS, with a

layout extractor, needed for a post-layout simulation.

5.3. Access time simulation

With the testbenches and the layout extract ready to be used, the next step is to start testing

the generated ROM. The testbench for the access time simulation makes use of a 12-bit ADC (Analog

to Digital Converter) that conveniently converts an input voltage value, representing the input

address in decimal form, to 12 bits on the memory input. In this way, it sets 3 input addresses, two

in the middle of the memory, sharing the same row, and one on the second to last row of the memory.

The addresses are set successively after a 1us startup, with the chip select signal enabled, following

a 20ns clock cycle.

Due to the early timing of the output latch, a “1” appears roughly 2 ns earlier on the output

than the actual output data value. This is shown in Figure 28 on two DATAOUT bit signals. One of

them changes from “0” to “1” and the other stays at “0”. Consequently, the access time can be

calculated correctly only from changes to “0” on the output. This way, the generator checks for falling

edges for all data output bits following the 20 ns time frames. If a falling edge is detected, a time

when the value of the output data signal reaches half the positive voltage is measured and saved.

Then a clock signal, corresponding to the address changes, is taken from an unconnected source

output, and similarly, the time of the signal rising edge is measured. Afterwards, the time of the output

data falling edge is subtracted from the time of the clock signal rising edge, and the result is saved

as a single access time value. After all the output data falling edges are measured, the maximum

value measured becomes the memory access time.

32

Figure 28: DATAOUT on address change with access time measurement

Though a certain number of passes to “0” is guaranteed to be on the output with any address

change due to the amount of them determined by the memory size, more accurate results will always

be reached while simulating the memory programmed in a checkerboard pattern. With the value

stored in one address being the same for all DATAOUT bits, the generator takes the addresses that

result in “0” on the output and measures the access time with them.

Regardless, upon clicking the “Access sim” button, the generator must first set up the

simulation. Continuing from the manual generation of the extracted layout view of the ROM, the

generator now creates and configures a config view. The config view is used to configure the

testbench and bind the ROM extracted view to the symbol located in the schematic. When running a

simulation of the config view, the results are determined from the memory layout. The generator uses

hierarchy database functions that enable creating the view and setting the library, view, and stop lists.

The resulting config view is shown in Figure 29 [16].

DATAOUT<4>

DATAOUT<2>

CLK

33

Figure 29: A generated config view

Subsequently, an ADE view is generated and set up with the use of OCEAN functions. The

functions used include specifying the design, simulator, model, definition files, creating design

variables, setting up the simulator options, corners, output expressions, and their specifications. The

choice of simulator is limited by its compatibility with the used OCEAN functions, discussed in more

detail in Chapter 6. The simulation is run right after the setup is completed, and the results are shown

in the command interpreter window, when the simulation is completed. Simultaneously, the results

are saved together with the simulation setup as a history setup that can be loaded in the ADE view

afterwards. The date and time of the simulation run is saved and included in the name of the history

setup for easy discernment of multiple runs. To customize the simulation, a new ADE view must be

manually created as a history setup does not save all data from the simulation to conserve disk space.

Figure 30: Access time simulation diagram

34

5.4. Decoding simulation

In the decoding simulation, the testbench has no sources. Instead, the wires that would lead

to them are left unconnected and the sources are replaced by the vector generator. The vectors follow

the pattern shown in Figure 11 with the lengths of the vectors changed to represent the generated

memory. First, the row decoders are tested. The address input is changed consecutively, ignoring the

first 4 bits, until it reaches the 256th row which is the maximum of the address. Simultaneously, both

the left and right row signals (RL and RR) are checked against the address. A single active bit

represents the row that is supposed to be active. Next, to test the column decoder, the row is set back

to the first one, and the first 4 bits of the address start changing while the COLE signal is compared

against them analogously. Any unexpected outputs are saved into a simulation error file by the

simulator.

The simulation can be run right after the ROM generation is completed. When the “Decoding

sim” button is used, the ROM generator first makes a generation file for the vector generator. The

vector generator is then run through an invoked process that can run commands from a UNIX shell.

Next, a run time for the simulation is read from a log file of the vector generator and the simulation

is set up and run akin to the access time simulation. One difference is the inclusion of the vector file

into the simulation. Finally, the simulation error file is checked, and the result is printed in the CIW.

If the file is empty, the simulation was successful and if not, the path to the error file is conveyed.

Figure 31: Decoding simulation diagram

35

5.5. Functional model for digital simulations and file conversion

Functional models for digital simulations replicate the basic functions of the circuit based on

an HDL (Hardware Description Language). In the case of an asynchronous ROM, only two things

are to be achieved. The functional model must be able to access a file containing data equivalent to

those programmed in the actual memory, and it must put the data on its output when the address input

is changed. Although the model can have other, more sophisticated capabilities, this provides a

baseline that can be expanded if the need to do so arises. The model, shown in Figure 32, is generated

as a Verilog file when the “Dig model” button is used. Figure 33 shows a manually written testbench

for the memory model that compares the output data with an expected value from the memory file.

Figure 32: Functional memory model for digital simulations

36

Figure 33: Testbench of the memory model

The memory file used by the functional model is expected to be filled by groups of binary

values separated by whitespace or newline symbols. The width of the binary value group corresponds

to the width of the output data bus. Files of this type are commonly used, and various proprietary file

generators and converters exist and are often employed by designers. Given that these generators are

already capable of generating such files, no file converters were developed as part of the ROM

generator. The same applies to the earlier described file used in ROM programming.

37

Chapter 6: Generator results

With the generator set up, ROMs of different sizes are generated for thorough testing. Most

importantly, the generator behaves as expected, consistently creating functioning ROM designs that

pass DRC and LVS checks. Their functionality is further verified by applying the simulation methods

described in Chapter 5. The results gained from these simulations are shown and examined

throughout this chapter.

6.1. Simulator constraints

SPECTRE, Cadence’s SPICE-class simulator, is the first choice for use in tandem with

seldom utilized Cadence tools whose compatibility with other simulators is hardly documented.

Expectedly, every utilized OCEAN or OCEANXL function works as anticipated with SPECTRE,

and the first simulation completes successfully without any errors. However, upon running a

subsequent simulation of any kind, the simulator inexplicably freezes on netlist generation and

returns no error messages. This bug occurs every time until the Cadence Virtuoso software is restarted

and happens even if the code is generated directly from an ADE view and run without modification.

Another available simulator for the purposes of the generator is AFS (analog FastSPICE)

provided by SIEMENS. Though it has its own design environment in development, the framework

of non-graphical and automated control is not yet implemented. As such, it is unfit for use by the

generator. Still, AFS can also be run by the ADE and consequently controlled by OCEAN commands.

Unlike in the case of SPECTRE, subsequent simulations run with AFS finish successfully. Despite

that, one crucial OCEAN function used to include the vector file, created by the vector generator, in

the decoding simulation is not supported and therefore unavailable for use. This makes AFS unable

to complete the decoding simulation with the use of OCEAN and OCEANXL commands.

With that said, the decoding simulation, DRC and LVS always pass as expected, signaling

an error-less generation of both schematic and layout views. AFS will be used in the automatic access

time simulation and SPECTRE will be used for the decoding simulation. While using two different

simulators on one IC design is in general a bad practice as they can return varying values, the only

relevant output from the decoding simulation is whether it passed or not. As such, the use of a

different simulator has no effect in this case apart from enabling smoother function of the generator.

38

6.2. Access time

With the choice of simulator completed, memories with different ROM dimensions are

generated. The dimensions were chosen to accurately cover most ranges. Step size increases with

ROM size, as seen in Table 5, because of the likelihood of use of the generated ROM. The table

shows the sizes of the memories in bits. The colored fields pertain to the memories that were

generated and simulated while the rest of the fields belong to memories that have their access time

later estimated based on the values from the generated memories. This estimation is made due to the

amount of time that would be spent on their generation and simulation. The blue fields belong to

memories with core halves that lean closer to square-like shapes and include both the largest and

smallest memories to be simulated. They are expected to have lower access times than the rest of the

memories with similar sizes. On the other hand, the orange fields represent memories with less

optimal dimensions. Table 6 shows the resulting access time measured from the simulated memories

in nanoseconds.

Table 5: Size reference [b] of generated and estimated memories

Table 6: Access time [ns] of generated memories

Rows
Columns

1024 4096 7168 10240 13312 16384 19456 22528 25600 28672 32768
1536 6144 10752 15360 19968 24576 29184 33792 38400 43008 49152
2048 8192 14336 20480 26624 32768 38912 45056 51200 57344 65536
2560 10240 17920 25600 33280 40960 48640 56320 64000 71680 81920
3072 12288 21504 30720 39936 49152 58368 67584 76800 86016 98304
3584 14336 25088 35840 46592 57344 68096 78848 89600 100352 114688
4096 16384 28672 40960 53248 65536 77824 90112 102400 114688 131072
5120 20480 35840 51200 66560 81920 97280 112640 128000 143360 163840
6144 24576 43008 61440 79872 98304 116736 135168 153600 172032 196608
7168 28672 50176 71680 93184 114688 136192 157696 179200 200704 229376
8192 32768 57344 81920 106496 131072 155648 180224 204800 229376 262144

10240 40960 71680 102400 133120 163840 194560 225280 256000 286720 327680
12288 49152 86016 122880 159744 196608 233472 270336 307200 344064 393216
14336 57344 100352 143360 186368 229376 272384 315392 358400 401408 458752
16384 65536 114688 163840 212992 262144 311296 360448 409600 458752 524288

128

256

192
256
320
384

128 152 176 200 2248 32 56 80 104

448
512
640
768
896

1024
1280
1536
1792
2048

Rows
Columns

4.240 5.015 5.701
4.298 4.499
4.338 4.540 4.729
4.381 4.580 4.766 4.896 5.544

4.622 4.809 4.936 5.065
4.845 4.979 5.104

5.018 5.142 5.272 5.958
5.225 5.354

5.429 5.555
4.755 5.513 5.644 5.767

5.715 5.857 5.979
5.876 6.002 6.139 6.270

5.524 6.155 6.294 6.424 6.589
6.452 6.577 6.746

5.463 6.217 6.740 6.9162048

896
1024
1280
1536
1792

384
448
512
640
768

256

128
192
256
320

128 152 176 200 2248 32 56 80 104

39

These values are plotted in relation to memory size in Figure 34. To approximate other

memories that follow the diagonal dimensions, a guideline defined by a power function was plotted.

The suboptimal orange values hint at how one small dimension can make the ROM slower overall,

but further analysis of the presented data is required. To accurately determine how access time

changes with ROM size, the measured access time values from Table 6 were used. Firstly, the

differences in access time between the blue generated memories, sharing either the number of rows

or columns, were compared to determine changes caused solely by one or the other. An average value

for the smallest possible change was calculated by taking neighboring memories and scaling the

access time difference between them to 4 rows and 16 columns respectively. Comparison of the

average changes implies that scaling with columns is approximately linear and consequently better

suited for estimating the rest of the memory access time values from Table 6.

Figure 34: Access time values of generated memories

40

Table 7: Average change in access time per 16 columns

Table 8: Average change in access time per 4 rows

With the average access time change value determined, the next step was to scale it back up

to the rest of the memory sizes. Taking only changes from column amount into account, the estimates

are based on the earlier measured diagonal values. Table 9 shows all access time values, including

values for memory sizes that were not generated, in green. The approximation proves fairly accurate

when it is compared to the values measured from unoptimal memory dimensions, where the highest

difference equals 26 ps for the memory with 128 rows and 2048 columns. Figure 35 depicts the

estimated values together with the earlier simulated ones. This combination forms an area of possible

access time values that contains ROMs able to be created by the generator.

Rows Average change per 16 columns [ps]
8 11.750

32 10.250
256 9.667
80 10.167

104 9.875
128 10.042
152 10.021
176 9.958
200 9.854
224 9.792
256 10.219

All values 10.143

Columns Average change per 4 rows [ps]
192 33.500
256 32.583
320 28.611
384 24.611
448 21.583
512 21.167
640 21.500
768 21.000
896 21.167

1024 22.000
1280 21.889
1536 21.819
1792 20.979
2048 22.000

All values 23.848

41

Table 9: Access time [ns] with estimated values

Figure 35: Access time values of generated and estimated memories

Some generated memories were also simulated across multiple corners to see how their

behavior changes in critical temperatures, with high and low power supply voltages , and with

different speeds of NMOS and PMOS transistors. Specifically, memories with a likely-to-be-used

width of the output data bus (16-bit, 32-bit, and 64-bit) were chosen. The memories still show the

programmed data on their output when read, even with a 10% supply voltage deviation under a range

of temperatures from -40 °C to 150 °C. The values in Table 10 show that undervoltage and high

temperatures have the largest influence on access time. With slow PMOS and NMOS corners this

results in up to 78% increase of access time for the largest memory.

Rows
Columns

4.240 4.458 4.648 4.774 4.903 5.015 5.149 5.280 5.422 5.540 5.701
4.298 4.499 4.688 4.815 4.943 5.069 5.190 5.321 5.463 5.580 5.755
4.338 4.540 4.729 4.855 4.984 5.110 5.230 5.361 5.503 5.621 5.796
4.381 4.580 4.766 4.896 5.024 5.150 5.271 5.402 5.544 5.661 5.836
4.422 4.622 4.809 4.936 5.065 5.191 5.312 5.442 5.573 5.702 5.877
4.462 4.663 4.845 4.979 5.104 5.231 5.352 5.483 5.614 5.743 5.917
4.503 4.703 4.886 5.018 5.142 5.272 5.393 5.524 5.654 5.783 5.958
4.584 4.784 4.967 5.099 5.225 5.354 5.474 5.605 5.736 5.864 6.021
4.665 4.865 5.048 5.180 5.306 5.429 5.555 5.686 5.817 5.945 6.102
4.755 4.947 5.129 5.261 5.387 5.513 5.644 5.767 5.898 6.027 6.183
4.836 5.028 5.210 5.343 5.468 5.594 5.715 5.857 5.979 6.108 6.264
4.998 5.190 5.372 5.505 5.631 5.756 5.876 6.002 6.139 6.270 6.427
5.161 5.352 5.524 5.667 5.793 5.919 6.038 6.155 6.294 6.424 6.589
5.323 5.515 5.686 5.829 5.955 6.081 6.201 6.317 6.452 6.577 6.746
5.463 5.677 5.849 5.992 6.118 6.217 6.363 6.480 6.614 6.740 6.916

1792
2048

1536

192
256
320
384
448
512
640
768
896

1024
1280

152 176 200 224 256104 128

128

8 32 56 80

42

Table 10: Corner run access time [ns] values

6.3. Layout area

Another important parameter is the area of the generated memory layout. Unlike the size of

the memory, the layout area doesn’t scale directly with rows and columns. A considerable portion of

the layout, see Chapter 5, stays identical for different memory sizes while only a portion of the layout

scales directly with the memory dimensions. In this way, the already generated memories can have

their layout areas measured and subsequently, the rest can be determined by calculating the area

change caused by the difference in rows or columns. Adding one bit of output data equates to the

sum of the widths of 16 cells and one cell divider. Similarly, 4 rows, the smallest possible change in

height, take up the height of 4 cells. These values equate to 13.19 µm and 5.2 µm respectively. The

area of the memories from the earlier shown tables is calculated from the smallest memory based on

these values.

Table 11: Calculated memory area layout [µm2]

Temperature [°C] Nominal -40 150 -40 150 -40 150 -40
Supply voltage [V] Nominal 1.62 1.62 1.98 1.98 1.62 1.62 1.98

PMOS Nominal Slow Slow Slow Slow Fast Fast Fast
NMOS Nominal Slow Slow Slow Slow Slow Slow Slow

56x256 (16-bit) [ns] 4.728 7.003 8.299 4.83 6.081 5.675 6.767 4.157
128x512 (32-bit) [ns] 5.272 7.809 9.357 5.382 6.833 6.347 7.629 4.625

200x1024 (64-bit) [ns] 5.979 8.818 10.66 6.108 7.776 7.208 8.682 5.235
Temperature [°C] -40 150 -40 150 -40 150 -40 150

Supply voltage [V] 1.62 1.62 1.98 1.98 1.62 1.62 1.98 1.98
PMOS Slow Slow Slow Slow Fast Fast Fast Fast
NMOS Fast Fast Fast Fast Fast Fast Fast Fast

56x256 (16-bit) [ns] 5.029 5.989 3.786 4.67 4.178 4.92 3.299 3.988
128x512 (32-bit) [ns] 5.599 6.712 4.199 5.223 4.646 5.512 3.645 4.448

200x1024 (64-bit) [ns] 6.362 7.635 4.752 5.912 5.261 6.254 4.121 5.024

Rows
Columns

29317 35806 42295 48784 55273 61762 68251 74740 81229 87718 96370
36754 44889 53024 61159 69294 77429 85564 93700 101835 109970 120816
44191 53972 63753 73535 83316 93097 102878 112659 122441 132222 145263
51628 63055 74483 85910 97337 108765 120192 131619 143047 154474 169710
59065 72138 85212 98285 111359 124432 137506 150579 163652 176726 194157
66502 81222 95941 110661 125380 140100 154819 169539 184258 198978 218604
73939 90305 106670 123036 139402 155767 172133 188499 204864 221230 243051
88813 108471 128129 147787 167445 187103 206760 226418 246076 265734 291945

103687 126637 149588 172538 195488 218438 241388 264338 287288 310238 340838
118561 144804 171046 197288 223531 249773 276015 302258 328500 354742 389732
133436 162970 192505 222039 251574 281108 310643 340177 369712 399246 438626
163184 199303 235422 271541 307660 343779 379898 416017 452136 488255 536413
192932 235635 278339 321042 363746 406449 449153 491856 534559 577263 634201
222680 271968 321256 370544 419832 469120 518407 567695 616983 666271 731988
252428 308301 364173 420045 475918 531790 587662 643535 699407 755279 829776

320
384
448
512

104

256

8 32 56 80 200 224 256

128
192

128 152 176

1792
2048

640
768
896

1024
1280
1536

43

The layout area values from this table are not perfectly accurate as the fact that the memory

layout is not a perfect rectangle is ignored as layout blocks have their areas planned and reserved

mostly in rectangle shapes. Layers such as N Well, buried layer implants, and epitaxial growth layers

surround the whole layout. Their minimum overhang is defined by DRC rules and adds to the

dimensions of the calculated area. Assuming the generated ROM is used with a different layout

design for other ICs, the effective area could be further reduced by a small amount with the

elimination of the overhang. What follows is multiple generated ROM layouts with their dimensions

shown beside them.

Figure 36: romTop_256x1532 layout

Figure 37: romTop_128x512 layout

44

Figure 38: romTop_32x256 layout

6.4. Generation time

Another useful parameter to consider is the time it takes the generator to perform the steps
of the generation process. Optimization, although not essential for this application, still has the
benefit of improving ease of use. Simulations and layout integrity checks are not included in this
analysis as they are independent of the design of the generator and rely on available licenses instead.

The most problematic part of generation is the memory core where the number of transistors

can reach hundreds of thousands. The generation time can be improved by not placing parts

individually where possible. One such possibility is making a separate layout cellview for a single

row that is repeatedly inserted into the memory core instead of individual transistors. However, this

cannot be the case for ROM programming because of the required connection of individual bit lines

to the transistor drains, described in Chapters 4 and 5. Furthermore, checking errors and saving the

schematic views also takes up a significant portion of the generation time that cannot be reduced.

With this taken into consideration, the generation times range from approximately 39 seconds to 1

hour and 31 minutes. These values belong to the smallest and largest memory generated from Table

5.

45

Chapter 7: Conclusion

The main purpose of a memory generator is to save time by essentially skipping parts of the

design process. The generator created in this project is based on a proven ROM design. The SKILL

programming language was used in the development of the generator and enabled the integration of

a graphical user interface into Cadence Virtuoso. The graphical interface includes the options to

generate a memory of specified dimensions and program it, open the top layout of the generated

memory to make a layout extract, run a post-layout access time simulation from the layout extract,

run a decoding simulation, and generate a Verilog functional model for digital simulations,

replicating the function of the memory. While using the generator, the time spent on designing a

ROM with new dimensions is consequently reduced to a fraction of what it would be following a

typical IC design workflow.

The generator was developed with only one ROM design and technology to conserve the

efficiency of the design in terms of area and speed as much as possible. However, parts of the

generator including the developed functions, simulation scripts, and user interface can remain

identical for other potential designs. Thus, possible future additions of further ROM designs into the

capabilities of the generator would require much less development time if the framework of this

generator were to be used.

Created memories were simulated from the whole size range of the generator. Nominal

simulations show that the access time of generated memories ranges from 4.2 ns to 6.9 ns. Based on

the simulations a guideline and graph of estimates were plotted to show what the access time value

will be for all memory sizes. Furthermore, multiple corner simulations were performed under which

the memories continued to function with up to 78% increase in access time. With this amount of data,

a tool able to accurately determine memory access time, before it is generated, could be developed

in the future.

 An important aspect to consider is the cost-effectiveness of the layout designs in smaller

memories. Though the amount of money potentially saved, resulting from the time saved on

designing the memory, is not negligible, the generated memory always decodes 12 address bits even

if not all of them are used. The unused address decoders can take up a sizeable portion of layout

space, especially with smaller memory sizes. Similarly, the sense circuit includes a number of

transistors not used in the final design. Consequently, one possible area of improvement lies in saving

more space by designing additional and more efficient layout views for these blocks and integrating

them into the generator. However, the current layout design of the whole ROM is still very compact,

following the minimum parameters of DRC rules. For example, a 25.6 kB memory with a 64-bit data

out bus has an area of 369712 µm2.

Other possible improvements include various additions to the graphical user interface.

Although customization of the automated simulations could be achieved in this way, the number of

menus and fields needed to provide the various choices would rapidly increase if meaningful options

were to be realized. Still, adding the options to run the set-up access time simulation across different

sets of corners might prove useful.

46

In summary, the developed generator is a complete and functional tool satisfying all

objectives of this project with space for improvements via possible future additions. These

improvements include reducing memory layout area for smaller dimensions, graphical user interface

additions, a tool able to estimate access time from input dimensions, and perhaps most importantly

an expansion of the generator for other memory designs.

47

Bibliography:

[1] LAN, Blue; STAR, Sung and JACQUES, Baudier. An MLC ROM With Inserted

Redundancy and Novel Sensing Scheme. Online. Design & Reuse. P. 1. Available at:

https://www.design-reuse.com/articles/36336/mlc-rom-inserted-redundancy-sensing-

scheme.html.

[2] INTEGRATED CIRCUIT ENGINEERING CORPORATION. ROM, EPROM, and

EEPROM Technology. Online. Available at:

https://web.eecs.umich.edu/~prabal/teaching/eecs373-f10/readings/rom-eprom-eeprom-

technology.pdf.

[3] SINGH, Jawar; MOHANTY, Saraju and PRAHDAN, Dhiraj, 2013. Robust SRAM Designs

and Analysis. Springer.

[4] PAVLOV, Andrei and SACHDEV, Manoj, AGRAWAL, Vishwani (ed.), 2010. CMOS SRAM

Circuit Design and Parametric Test in Nano-Scaled Technologies. Springer.

[5] A Low Power 200 MHz Multiported Register File for the Vector-IRAM Chip, 2001. Online,

Technical Report. Berkeley: University of California, EECS Department. Available at:

https://www2.eecs.berkeley.edu/Pubs/TechRpts/2001/5461.html.

[6] SAMSON, Giby and ANANTHAPADMANABHAN, Nagaraj. Low-Power Dynamic

Memory Word Line Decoding for Static Random Access Memories. Online. Journal of

Solid-State Circuits. Vol. 43, no. 11, p. 2524-2532. Available at:

https://doi.org/10.1109/JSSC.2008.2005813.

[7] Allegro Microsystems [datasheet]. SG8 Asynchronous ROM Datasheet 2k of 64-bit words.

2020

[8] TURI, Michael and DELGADO-FRIAS, José, 2008. High-Performance Low-Power

Selective Precharge Schemes for Address Decoders. Online. IEEE Transactions on Circuits

and Systems II: Express Briefs. Vol. 55, no. 9, p. 917-921. Available at:

https://doi.org/10.1109/TCSII.2008.923435.

[9] WICHT, B.; NIRSCHL, T. and SCHMITT-LANDSIEDEL, D., 2004. Yield and speed

optimization of a latch-type voltage sense amplifier. Online. IEEE Journal of Solid-State

Circuits. Vol. 39, no. 7, p. 1148-1158. Available at:

https://doi.org/10.1109/JSSC.2004.829399.

[10] The D Latch. Online. In: All About Circuits. Available at:

https://www.allaboutcircuits.com/textbook/digital/chpt-10/d-latch/.

[11] STEVENS, Kenneth; GOLANI, Pankaj and BEEREL, Peter, 2011. Energy and Performance

Models for Synchronous and Asynchronous Communication. Online. IEEE Transactions on

Very Large Scale Integration (VLSI) Systems. Vol. 19, no. 3, p. 369-382. Available at:

https://doi.org/10.1109/TVLSI.2009.2037327.

48

[12] AMRUTUR, B. and HOROWITZ, M., 1998. A replica technique for wordline and sense

control in low-power SRAM's. Online. IEEE Journal of Solid-State Circuits. Vol. 33, no. 8,

p. 1208-1219. Available at: https://doi.org/10.1109/4.705359.

[13] LI, Tong and KANG, Sung-Mo, 1998. Layout extraction and verification methodology for

CMOS I/O circuits. Proceedings 1998 Design and Automation Conference. 35th DAC. (Cat.

No.98CH36175). Available at: https://doi.org/10.1109/DAC.1998.724485.

[14] CADENCE DESIGN SYSTEMS, INC. Cadence SKILL Language User Guide IC6.1.8.

Online. Available at: https://support.cadence.com/.

[15] CADENCE DESIGN SYSTEMS, INC. Cadence Functions Reference. Online. Available

at: https://bpb-us-w2.wpmucdn.com/sites.gatech.edu/dist/0/367/files/2016/03/

Cadence_functions_reference.pdf.

[16] CADENCE DESIGN SYSTEMS, INC. OCEAN+Reference. Online. Available at:

https://www.eecis.udel.edu/~vsaxena/courses/ece697A/docs/OCEAN+Reference.pdf.

[17] LOW POWER 16-CHANNEL DATA SELECTOR FOR BIO-MEDICAL APPLICATIONS,

2014. Online. International Journal of VLSI design & Communication Systems (VLSICS).

Vol. 5, no. 6, p. 1-8. Available at: https://aircconline.com/vlsics/V5N6/5614vlsi02.pdf.

